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USE OF THE SPLITTING SCHEME AND MULTIGRID 
METHOD TO COMPUTE FLOW SEPARATION 
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SUMMARY 

The splitting difference scheme is used to study flow separation. Flows behind a circular cylinder are 
computed as a model problem. In view of the nature of the flow, the variables are transformed. The 
boundary condition for the pressure is given from an intermediate velocity. The free-slip velocity boundary 
conditions on the rigid wall are given by interpolation. The multigrid algorithm is applied to the pressure 
iteration. We also choose better initial values for the model problem by means of the multigrid algorithm 
idea. 
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INTRODUCTION 

In recent years there have been many techniques developed for the numerical solution of the 
incompressible Navier-Stokes problem. Most of these methods were developed for equations 
of the stream function and the vorticity function. The main drawback of these methods is the 
use of a boundary condition for the vorticity at the solid wall, which is absent in hydrodynamics. 
The obvious limitation of methods of solving for the stream function and vorticity function is 
the difficulty of extending them to the case of three-dimensional flows. Therefore, we consider 
the numerical solution of the Navier-Stokes initial-boundary value problem, expressed in the 
natural variables. 

The MAC-type (marker and cell) methods are the most important of the difference methods 
of solving the Navier-Stokes problem. The MAC method was first published by Harlow and 
co-workers. 1 ~ 2  Chorin3 used an iterative technique to determine pressure and velocity simul- 
taneously which is, in fact, a numerical construction of the appropriate projection operator. The 
idea of orthogonal decomposition is used by many splitting methods of solving the Navier-Stokes 
problem, which were proposed afterwards. 

A modified formulation of boundary conditions for the MAC method was presented in 
Reference 4. The modification enables homogeneous boundary conditions to be obtained for 
the pressure. 

Mathematicians of the Soviet Union gave a new computational formula for velocity boundary 
conditions on the solid  surface.'^^ 

Numerical fluid dynamics is the most challenging field for the multigrid method. China et al.’ 
have used the vorticity-stream-function formulation of the two-dimensional Navier-Stokes 
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equations and a multigrid method to obtain solutions for the driven flow in a square cavity. 
Brandt8.9 discussed the application of the multigrid algorithm to hydrodynamics. 

In this paper, we use the splitting scheme and a multigrid algorithm to compute flows behind 
a circular cylinder. Main attention is given to the computation of flow separation. 

DIFFERENTIAL EQUATIONS AND BASIC ALGORITHM 

The Navier-Stokes initial-boundary value problem written in vector form is 

(1) 

v - u  = 0 (2) 

Ulan = us,  ( 3 )  

4 , = 0  = uo, (4) 

aU 
at 
-+ u.VU+ V P  = ~ A u ,  t > O , X E Q ,  

where u = (u, u) is the velocity vector, P is the ratio of the pressure to the constant density 
(for brevity, we refer to P simply as pressure) and p is the kinematic viscosity coefficient. 

In order to deduce the basic scheme and the pressure boundary condition, we consider 
differences in the time direction first: 

1 -[u"+' - u"] = - u"*Vu" - VPni1 + pAu". 
z 

Let the intermediate velocity be 

then 
ii = u" + z[ - U"'VU" + pVu"], 

U " + l  = i i  - - V p n + l .  

It follows from (2) that 

1 
A p " + l  =-V.f i .  (7) z 

Assume that 5 is the unit vector in outward normal direction on the boundary. From ( 3 )  
and (6), we have the pressure boundary condition 

This condition takes a simpler form on the rigid wall: 

Combining the formulae (7) and (8), the intermediate velocity on the rigid wall can be cancelled. 
Therefore, the condition (8) is convenient. 

The above-mentioned formulae (5)-(8), ( 3 )  and (4) are a basic splitting algorithm for solving 
the Navier-Stokes problem. 

Because we compute flows behind a circular cylinder, the Navier-Stokes problem is expressed 
in polar co-ordinate form: 
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Ulan = 0, UI, = u,, 

uI,=o = uo.. 

Thus, the computational region is a rectangle for flows behind a circular cylinder. In order to 
compute the flow separation, fine grids are necessary near the rigid wall. The variable r is 
transformed again. Let z = In r and the Navier-Stokes problem is 

a au 
a Z  acp 

e-z-(e2u) + - = 0, (z, cp)~R, t > 0 

DIFFERENCE SCHEME 

We employ the formulae (5)-(7) to deduce the difference scheme. In the scheme, the pressures 
are stored at cell centres and the velocities at cell sides (see Figure 1). The difference scheme for 
(9)-(11) has the following form: 

Figure 1. Field variable value place about a computational cell 
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where 1 6 i 6 IT, 1 6 j  6 JT, IT and JT give the total numbers of points in the z and cp directions, 
respectively, z is the step size of time, h, and h2 are the step sizes in the z and q directions, 
respectively. 

It is easy to see that (14)-(19) approximate the differential equations (9)-(11) with an error of 
order O(z, h2), where h = Max(h,, h2). 

First, we compute the intermediate velocities 6, 6, ignoring the pressure. Then Poisson's 
equations for the pressure are solved. Finally, using the new pressure values, we modify the 
intermediate velocities 6, 17 and obtain new values of the velocities u"", u"+' at  a new time. 

It may be noted that some of the velocities and pressures are required at  points where these 
quantities are not stored. We use an average of adjacent values to give the value at such a point: 
for example 

u i + ( 1 / 2 ) , j + ( 1 / 2 )  = t ( u i +  ( 1 / 2 ) , j +  1 + ui + (1 ,2) , j )9  

- 1  
u i + ( l / 2 ) , j  - ~ ( u i . j + ( 1 / 2 )  + u i , j - ( l / 2 )  + *'i+ 1 , j + ( l / 2 )  + ui+ 1,j-(1/2)). 

In the difference scheme, momentum equations are explicit, since we consider flows with higher 
Reynolds number. The pressure equations are implicit and are solved by a multigrid method. 
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APPLICATION O F  THE MULTIGRID METHOD 

In the difference scheme (14)-(19), only formulation (16) to solve the pressure is implicit. Therefore, 
we employ a multigrid method to solve it. Because pressure values at the previous time step are 
good approximations for pressure values at the current time step, we use such iterative initial 
values: p;,j' l(O) = P" i , j *  

In order that this paper is reasonably self-contained, we consider a brief description of the 
multigrid method applied to the equation 

A u = F ,  in R. 

Its approximation solution uh on the fine grid Rh satisfies 

A h U h = F h ,  in ah. 

The operator AH is an appropriate approximation of the operator Ah on a coarser grid R,. The 
operator Zr is a restriction operator from the fine grid to the coarse grid R,. The operator 
Zk is an interpolation operator from the coarse grid to the fine grid. We have an approximate 
solution up) of the equation Ahuh = Fh. In order to find a new approximation up+ '), the process 
of the multigrid method is illustrated in Figure 2. 

Of course, this basic principle can be applied recursively employing coarser and coarser grids. 
The structure of one iteration step (cycle) in a multigrid method is illustrated with a few pictures 
which are given in Figure 3. 

(Compute the d e f e c t  1 (Obtoin a new approximat ion)  

1," (Restr ict  the defect  1 1; ( In terpolate  the 
correct ion 1 t 

(Obta in  the defect  on 
the coarse g r i d )  

two-grid 

W 
y =  I 

(Sa lve  exact ly  on the 
coarse  gr id  ) 

Figure 2. Process of the multigrid method 

three-gr id  vw 
y =  1 y =  2 

four ' - g r i d  

y = l  y = 2  
Figure 3. Structure of one multigrid cycle: O,O, \ and / mean smoothing, solving exactly, fine-to-coarse and coarse-to-fine 

transfer, respectively 
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In our computation, the ratio of step size on the coarse grid QH to that on the fine grid Qh is 2. 
Note that the coarse grid pressures are located at points different from the location of the 

fine grid pressures in the difference scheme. We choose the restriction operator from fine grid 
to coarse grid as an average of four neighbouring points with the same weight 0.25: 

h h h 
P f j = $ ( P Z i - 1 , 2 j - l  + f ' z i - ~ , z j + P z i , 2 j - ~  + P z i , 2 j ) .  

Bilinear interpolation is employed as the interpolation operator from coarse grid to fine grid 
and this is written as 

P:i,zj = &(9PFj + 3 P f +  1 , j  + 3 q j +  1 + P?+ l , j +  1). 

MODEL PROBLEM AND BOUNDARY CONDITIONS 

As a model problem, we consider incompressible, viscous flows past a circular cylinder of radius 
a, with the axis of the circular cylinder perpendicular to the velocity of the incident flow u,. For 
simplicity, we take a = 1 and I u , ~  = 1.  Thus the Reynolds number Re = 2/p. 

Considering symmetry, the computational region is the rectangle 

{ z, cp I ZE [O,Z,l, cp E [O, .I I. 
It is enough to compute flow separation that we take z, = 3, i.e. roo = 20.086. 

The boundary conditions for the difference scheme (14)-(19) have the following form: 

(i) Conditions on the unperturbed flow are specified at z = z,: 
U n  + 1 pn+ 1 

I T + ( l / Z ) , j =  coscp, v h + ? l , j + ( l / Z ) =  - sinq, I T + l , j = O .  

(ii) A rigid wall of no-slip is located at z = 0: 
U n +  1 

( l / z ) , j  =O, G : i ( l / z )  = - K : i ( 1 / 2 ) .  

Using the formula (8), we obtain the boundary condition for the pressure as 

-e-Z1/z(pn+1 1 - p"01) =;c 1 1 ,j WWi* h l  

(iii) Rigid walls of free-slip are located at cp = 0 and cp = n. A rigid wall of free-slip is considered 
to represent a plane of symmetry, rather than a true wall: 

v;,:1;2, = 0, vy,:T:(,/2) = 0. 

G:(:/z),o - t + ( i / z ) , i  7 G:(:/z),JT+ 1 = Gt(:/Z),JT. 

For tangential velocities, simple formulae are given by symmetry' as 

(20) - u n +  1 

From the formulae (14)-(19), we can see that the boundary conditions (20) are employed 
only in computing the intermediate velocities f i i + ( l p ) , ~  and U"i+(l/Z),JT. Therefore, boundary 
conditions for the intermediate velocities z&+(l /z ) , I  and iii +(1/2),1T are considered instead of 
(20). These boundary conditions are given by our deduction as 

(21) 
- 5  n 

'i+(l/Z),I - 6%+(1/2),1 +iuy+(1/2),2, ci+(l/Z),JT =du;+(l/Z),JT + ~ ~ ; + ( ~ / z ) , J T - I  

which are obtained by quadratic interpolation. The boundary conditions for the pressure 
are similar to those of the rigid wall of no-slip: 
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STABILITY 

It is difficult to derive the full necessary and sufficient conditions of numerical stability for the 
Navier-Stokes problem. But, some valuable conditions are obtained by theoretical analysis. 

The basic condition of stability is that fluid must not be permitted to flow across more than 
one computational cell in one time step, i.e. 

This condition is also necessary for accuracy, because the convective flux approximations in the 
difference scheme (14)-( 19) assume exchanges between adjacent cells only. 

When the viscous diffusion terms are important, we have to consider a stability condition for 
the explicit approximation of the parabolic equations. This restricts the time increment to 

1 
z < Min 

2.[ (&J + (&)'I. 
Using a heuristic stability analysis proposed Hirt," a necessary stability condition is given by 

(24) 
p >  Max[;u;j,j':il- Z 

1.J 

This condition can be explained as avoiding the occurrence of truncation errors that have the 
form of negative diffusion. 

We use the above-mentioned three conditions (22)-(24) as necessary ones. They are compared 
with stability conditions given by our computational experience. The results are given in Table I. 

Table I. Comparison on step size of stability 

Reynolds number 1 10 100 

Grid 32 x 32 16 x 16 64 x 64 16 x 16 64 x 64 

Stability condition given z < OQ012 z < 00053 z < 0.0028 z < 0053 z < 0.028 
by the conditions (22)-(24) 

The longest step size 

computational experience 
of stability given by 0.001 0005 0.002 0.05 0002 

From Table I, we see that the conditions (22)-(24) in the cases Re = 1 and Re = 10 give step 
sizes of stability, which are almost sufficient for stability. But, the sufficient stability condition 
is much more stringent than the conditions (22)-(24) in the case Re = 100. The reason is that 
there is a large stagnation region in the flow field of Re = 100. 

The truncation error is unavoidable in finite difference approximations, and they do influence 
the accuracy of a calculation. In order that the effects of p are not to be obscured by truncation 
error, the following condition is necessary: Re < 4(IT)'. In fact, a grid which is much finer than 
the grid given by the Re < 4(IT)2 is taken in the computation of flow separation. In order to 
obtain correct separation phenomena, we have to take the grid IT = JT = 64 at the cases Re = 10 
and Re = 100. 
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DISCUSSION OF COMPUTATIONAL RESULTS 

Analysis of the multigrid algorithm 

At the present time, a fairly large number of applications of the multigrid algorithm are known. 
Most of these applications deal with the steady problem. Experience with multigrid applications 
to an evolution problem is sparse. In the Navier-Stokes problem considered here, velocity and 
pressure vary with time and they tend to a steady solution if the Reynolds number is not very 
high. We have to analyse and decide how to employ the multigrid algorithm. In the initial period 
of computation, there are large increments of the pressures and velocities in one step of time. 
We compared the multigrid algorithm with the Gauss-Seidel iterative method for solving the 
pressure equations (16). In the grid IT = 64, JT = 64, time t" = 0 an initial values are 

The results are given in Table 11. 
In Table 11, M = 1 means that the Gauss-Seidel iteration is used instead of the multigrid 

algorithm and M = 4 means that we use the multigrid algorithm with four grids 64 x 64,32 x 32, 
16 x 16 and 8 x 8. It follows from Table I1 that the multigrid algorithm is very efficient in the 
initial period of computation. But the solution of our problem tends to a stable one and the 
increments of the pressures and velocities in one step of time are decreased with time. When the 
increments are small enough, the simple Gauss-Seidel iteration is better than the multigrid 
algorithm. For example, in the same case as that decribed by Table 11, the computational results 
are given in Table I11 for the later time t = 1. 

Therefore, we employ the multigrid algorithm in the initial computation. When the number 
of iterations in the multigrid algorithm is 1, the Gauss-Seidel iteration is used. If the number 
of Gauss-Seidel iterations is more than 5, we employ the multigrid algorithm again. 

Choice of the initial values 

In our problem, the solution of the Navier-Stokes equations tends to a steady sdlution. 
Therefore, computational results are independent of the initial values. In view of idea of the 
multigrid method, we can choose better initial values to save computational time. First, the 
Navier-Stokes problem is solved on a coarse grid with IT = 16 and JT = 16. Then, interpolating 

Table 11. The results at t = 0 

Reynolds number Re = 10 1 

The number of levels 1 4 4 5 5 1 4 
in the multigrid M = 

Type of cycle y = 1 2 1 2 1 

The number of 
iterations 

9638 17 8 33 8 11,824 19 

CPU time in one 562.7 8.27 6.50 12.35 4.98 623.0 9.21 
step of time 
(in seconds) 
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Table 111. The results at t = 1 

Reynolds number Re = 10 

The number of levels 1 4 4 5 5 
in the multigrid M = 

Type of cycle y = / 1 2 1 2 

The number of 3 1 1 1 1 
iterations 

CPU time in one 074 1.01 1.11 1.01 1.14 
step of time 
(in seconds) 

Figure 4. Cells near the rigid wall 

the computational values of the pressures and velocities, their initial values on the next finer 
grid are obtained. The problem is solved on the grid with I T = 3 2  and J T =  32. Finally, we 
interpolate again and compute the flow separation of the Navier-Stokes equations on the fine 
grid with IT = 64 and JT = 64. Using this method, the flow separation for Re = 10 is computed 
and its CPU time is only 29min on the IBM-3083 computer. If we use general initial values on 
the grid with IT = 64 and JT = 64, for example 

then CPU time for the flow separation at Re = 10 is 134min. 

parabolic type. 
This method of choosing initial values is efficient. It is also suitable for some problems of 

Choice of extrapolation operator near the rigid wall 

The pressure values outside and on the rigid wall are unknown. Therefore in the multigrid 
method, we have to use extrapolation operator near the rigid wall to determine the approximate 
pressure values on the fine grid. Three formulae are considered (for notation see Figure 4): 
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(a) bilinear extrapolation from the coarse grid: 

(b) quadratic extrapolation in one direction of the fine grid: 

P:, = 3Ph, - 3Ph, + P!& 

(c) linear extrapolation in one direction of the fine grid 

P:, = 2Ph, - Pk. (27) 
In the case t = 0, Re = 10, IT = 64, JT = 64 and M = 4 (the number of levels in the multigrid), 
we compared the three formulae. The results are given in Table IV. 

In view of our experience, the formula (25) is better than the formula (26), especially on a coarser 
grid. 

Using the formula (27), iterative error tends to a constant, which is much more than 

Computational results 

We compute flows behind a circular cylinder in the cases Re = 1, 10, 100. The boundary 
conditions (20) and (21) for the rigid wall of free-slip are compared. The computational results 
are given in Table V. 

Comparing the results with those of experiment, we know that the boundary condition (21) 
for the rigid wall of free-slip is better than the condition (20). The pictures of streamlines for the 
problem (9)-( 13) are given in Figures 5-7. We can see from Figures 6 and 7 that there are a line, 
along which velocity equals to zero, and a stagnation region in each Figure. 

Table IV. Comparison of the extrapolation formulae 

Formula (25) (26) (27) 

Type of cycle y = 1 2 1 2 1 2  

The number of 
iterations 

17 8 17 8 c o c o  

Table V. The results at t = t ,  (the solution is steady) 

Re Boundary Po p ,  Cf CP CD 0, 
condition 

(20) - 0.4897 1.1284 0.2884 0.8866 1.1750 66" 

(21) - 0'5696 1.0612 0.2856 0.9149 1.2005 66" 
100 

(20) - 0.8 125 1.6237 1.3180 1.7797 3.0977 29.5" 

(21) - 0.8468 1.3870 1.3156 1.7442 3.0598 295" 
10 

1 (21) -3.2666 3'6557 6.3220 6.5144 12.8364 0" 
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